Optimizing Thermal Management in Microelectronics

EPO-TEK® Products For Optimizing Thermal Management

H20E	Unsurpassed performance in thermal management
	Proven reliability for 35+ years

- **H20E-HC** 2nd generation thermal management product > High ThK, low Tg and high degradation temp
- EK1000 New advanced, single or two component adhesiveEK2000 > Long pot life, low outgassing & exceptional ThK
- **EK1000-1** Newest, version of EK1000 designed for a longer dry time
 - > Extended working time and exceptional ThK

Innovative Epoxy Adhesive Solutions for Over 45 Years™

H20E Unsurpassed per thermal manager

Proven reliability for 35+

H20E-HC 2nd generation the management pro

High ThK, low Tg and hi

EK1000 New advanced, s EK2000 component adhe

Long pot life, low outgas

EK1000-1 Newest version of for a longer dry ti

Extended working time

Increased Thermal Conductivity Through Cure

Products for

Management

Therma

[†]Significantly higher thermal conductivity values can be achieved with a stepped-cure for H20E-HC, EK1000/EK2000 and EK1000-1.

Note: EK1000-1 will reach 22.7 W/mk during a stepped cure.

Conductive adhesives achieve highest conductivity (**↑**ThK) when maximum shrinkage is achieved.

Curing and Thermal Resistance Particle Col

Optimal resin shrinkage pulls the particles closer together to:

- Minimize thickness of insulating resin between particles
- Maximize area of contact between two particles

Uncured Adhesive

High Resistance

		H20E	H20E-HC	EK1000/ EK2000	EK1000-1
formance in nent	Thermal Conductivity (W/mK) cured 150°C/1hr	2.6	10.9	12.6	12.1
ivears	Thermal Conductivity (W/mK) cured 150°C/1hr + 200°C/1hr	2.8	23.0	26.3	22.7
duct gh degradation temp	Туре	Two Component	Two Component	Single & Two Component	Single Component
	Pot Life (days)	2.5	2.5	14	14
ingle or two	Tg (°C)	80	50	98	103
sive	CTE below Tg (in/in/°C)	34	48	38	41
ssing & exceptional ThK	Volume Resistivity (ohm.cm)	0.00019	0.000023	0.000029	0.00007
of EK1000 designed	Modulus (psi)	808,700	217,731	273,599	609,195
me	Degradation Temperature (°C)	425	372	357	357
and exceptional ThK	Die Shear (kg) initial	15.4	8.0	10.1	≥10
	Die Shear (kg) After 1000hrs 85°C/85%RH	9.3	9.5	6.4	≥5

Thermal Resistance Comparisons^{*}

Example 1

Large Die (4.82mm x 3.05mm) and standard BLT (50um)

Product	Measured Thermal Resistance (°C/W)
H20E	0.79
H20E-HC	0.63 Best Result
Competitive Adhesive A (advertised ThK is 60 W/mK)	0.73
Competitive Adhesive B (advertised ThK is 10 W/mK)	1.58

Example 2

Small Die (60mil x 40mil) and thin BLT (10um)

Product	Measured Thermal Resistance (°C/W)
H20E	26.80
EK1000	22.00 Best Result
Competitive Adhesive C (advertised ThK is 10 W/mK)	24.00

To achieve the most efficient thermal transfer in an

actual device, low thermal resistance is required.

* See back page for the difference between thermal resistance and thermal conductivity.

Note: Thermal Resistance measurements are device and operating condition specific — making it *nearly impossible* to pre-judge the actual thermal performance of an adhesive in a device by <u>only</u> comparing the bulk **Thermal Conductivity** data on a product data sheet.

ntact Resistance Model

Impact of cure conditions:

- **Too low** of a cure temperature will result in slow cure and low crosslink density.
- **Too high** of a cure temperature can cause high exotherms that may actually cause the system to expand rather than shrink.
- **Proper** cure conditions are dependent on the chemistry of the adhesives.

epotek.com

What is Thermal Conductivity?

In the continued quest for miniaturization, thermal conductivity is playing an even more important role in today's products. More and more adhesives are relied upon to dissipate The most common test method for measuring thermal generated heat away from active components.

Thermal conductivity is a fundamental material property that is essential for characterizing this heat transfer.

It is, by definition, equal to the quantity of heat that is transferred in a specific period of time through a known sample area when the sample's opposite faces are subjected to an applied temperature gradient. Typical units of thermal conductivity are:

$$\frac{\text{Watts}}{\text{meter * Kelvin}} \left(\frac{\text{W}}{\text{m * K}} \right)$$

conductivity is Laser Flash Diffusivity.

Thermal Resistivity vs Thermal Resistance

Thermal Resistivity (the inverse of Thermal Conductivity) is a material (device and geometry indepen*dent*) property and refers to that material's ability to resist the flow of heat.

Thermal Resistance is an object (device and geometry dependent) property. The thermal resistance between two points is defined as the ratio of the difference in temperature to the power dissipated.

Thermal Resistance Contribution of a Die Attach Adhesive

NOTE: Because interfaces and other geometry factors play such a large role in determining the actual thermal resistance of an adhesive in a device, a high bulk thermal conductivity value for an adhesive is important, but may not always be a sufficient predictor of low resistance.

To achieve the most efficient thermal transfer in an actual device, low Thermal Resistance is required.

KOIH

OMPLIAN

9001

For optimizing thermal management we recommend:

- **H20E** Unsurpassed performance in thermal management
- H20E-HC 2nd generation thermal management product
- EK1000 Newest, most advanced, single or two EK2000 component adhesive
- EK1000-1 Newest, version of EK1000 designed for a longer dry time

Consult our Application Experts to discuss your specific technical challenges at: techserv@epotek.com.

For ordering, please contact us at: Epoxy Technology Inc.

14 Fortune Drive • Billerica, MA 01821 Tel: 978-667-3805 • Fax: 978-663-9782 techserv@epotek.com

DISCLAIMER: Data presented is provided only to be used as a guide. Properties listed are typical, average values, based on tests believed to be accurate. It is recommended that users perform a thorough evaluation for any application based on their specific requirements. Epoxy Technology makes no warranties (expressed or implied) and assumes no responsibility in connection with the use or inability to use these products. Please refer to the product data sheets and safety data sheets (SDS) for more detailed information

® and [™] designate trademarks of Epoxy Technology Inc. © Epoxy Technology Inc. 2014 All rights reserved.